CS 335: Register Allocation

Swarnendu Biswas

Semester 2019-2020-I1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Impact of Register Operands

* Instructions involving register
operands are faster than those
involving memory operands

e Code is often smaller and hence
is faster to fetch

Computer Memory Hierarchy

* Efficient utilization of registers is / Mol \
i m po rta nt small size / power off \ﬂash/USB memory
* Number of general-purpose
registers is limited / o \L’;ﬁiz:;iheap

* ~16-32 64-bit general-purpose large size power off tape backup
reg i Ste rS very large capacity long term very slow, affordable

Goals in Register Allocation

 All variables are not used (or live) at the same time

* Register allocator in a compiler helps with decision making
* Which values will reside in registers?
* Which register will hold each of those values?

e At each program location, values stored in virtual registers in the IR are
mapped to physical registers

Input Output

program Register program
> —> e O
n registers Allocator m registers

Goals in Register Allocation

* Programs spend most of their time in loops
* Natural to store values in innermost loops in registers

* When no registers are available to store a computation, the contents
of one of the in-use registers must be stored into memory

* This is called register spilling
* Spilling requires generating load and store instructions

* Concerns associated with spilling
* Code and data overhead associated in spilling, and the overhead in execution time

* Register pressure measures the availability of free registers
* High register pressure implies that a large fraction of registers are in use

Goals in Register Allocation

e Goal in register allocation is thus to minimize the impact of spills
especially for performance-critical code

* Allocation
* Maps an unlimited name space onto the register set of the target machine

* For e.g., map virtual registers to the physical register set and spill values that
do not fit in the physical register set

* Or, map a subset of memory locations to a set of physical registers

* Assignment
* Map an allocated name set to the physical registers of the target machine
e Assumes that allocation has already been performed

An Analogy

* Register allocation is a bit like room scheduling

* Room scheduling
* We have a set of rooms (registers)
* We have a set of classes (variables) to fit into the rooms

e Two classes that meet at the same time cannot be allocated to the same
room

* The difference is that in room scheduling there can be no spilling; no
one gets to have their lecture in the park!

Challenges in Register Allocation

* Architectures provide different register classes

* General purpose registers, floating-point registers, predicate and branch
target registers

* General-purpose registers may be used for floating-point register spills, which
implies an order for allocation

e Registers may be aliased

* x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bits registers
» Similarly, vector registers like zmm, ymm, and xmm

* If different register classes overlap, the compiler must allocate them together

PowerPC calling conventions requires parameters to be passed in R3-
R10 and the returnis in R3

Register Allocation Problem

* General formulation of the problem is NP-Complete
* For e.g., register allocation for a set of BBs, multiple control flow paths,
multiple data types, non-uniform cost of memory access complicate the
analysis
e Optimal allocation can be done in polynomial time for very restricted versions
with a single BB, with one data type,

Local Register Allocation

Local Register Allocation

* Assumptions

* Considers only a single basic block

* Loads values from memory and stores to memory

 Single class of k general-purpose registers on the target machine

/Opl vT'll, UT]_Z = vrlg\
0)0))] Urzl, UTZZ = UTZB

0Py VT, Uy, = Uy,

- /

=)

-

op; 7,7 =7
op, 7,7 =7

op, 7,7 =7

Top-Down Allocation with Frequency Counts

* |dea
* Count the frequency of occurrence of virtual registers
* Map virtual registers to physical registers in descending order of frequency

* If the BB uses fewer than k virtual registers, then mapping is trivial
* A few registers (F = 2—4) are required to execute spill code

* Assign the top (k — F) virtual registers to physical registers

* Rewrite the code and replace virtual registers with physical registers

* For unassigned virtual registers, generate code sequence to spill code
using the F reserved registers

Drawback of Top-Down Allocation

* Top-down local allocation keeps heavily used virtual registers in
physical registers

* Allocates a physical register to one virtual register for the entire BB

* Allocation can be suboptimal if values show phased behavior

* A value heavily-used in the first half of the BB and no use in the second half of
the BB still stays in the physical register

Bottom-Up Allocation

* |lterates over the operations in the
BB and makes decisions

* Assume that registered are grouped
in classes
« Size: # physical registers
« Name: virtual register name
« Next: distance to next reuse

« Free: flag to indicate whether
currently in use

struct Class f{

int
int
int
int
int
int

Size;
Name[Size];
Next[Size];
Free[Size];
Stack[Size];
StackTop;

Bottom-Up Algorithm

for each operation i={1..n}

r, = Ensure(vr;, class(vry))

r, = Ensure(vr;,, class(vr,))

if vr;, is not needed after i
Free(r,, class(r.))

1f vr;, is not needed after i
Free(r,, class(r,))

r, = Allocate(vr;,, class(vr,))

rewrite i as op;n,n, =1

if vr;, 1s needed after i
class.next[n]= Dist(wvr)

if vr;, is needed after i
class.next[r,]= Dist(vr,)

class.next[r,]= Dist(wr,)

Bottom-Up Algorithm

Ensure(vr, class) Allocate(vr, class)
1f vr 1s already 1in class 1f class.StackTop >= 0
result = vr's physical register i = pop(class)
else else
result = Allocate(vr, class) i = j that maximizes class.Next[j]
emit code to move vr into result store contents of jJ
return result class.Name[i] = wvr

class.Next[i] = -1
class.Free[i] = false
return 1

Challenges in Bottom-Up Allocation

* A store on a spill is unnecessary if the data is clean

* Register contains a constant value
* Register contains a return from a load

* A spill should be stored only if the data is dirty

* Nice!

But is it so straightforward?

* Assume a two-register machine
* x1 is clean and x, is dirty
* Assume reference stream for the rest of the BB is x3x;x,

4)
store x,
load xj
load xj

- /

spill dirty value

But is it so straightforward?

* Assume a two-register machine
* x1 is clean and x, is dirty
* Assume reference stream for the rest of the BB is x3x;x,

4) 4 \L
store x, .
load x; Load x m

load x, load x;
- / - /

spill dirty value spill clean values

CS 335 Swarnendu Biswas

But is it so straightforward?

* Assume a two-register machine
* x1 is clean and x, is dirty
* Assume reference stream for the rest of the BB is x3x;x3Xx1X>

4) 4)
load x5 store x,
load x; load xj
load x; load x,
load x; - J

\ /

spill clean values spill dirty values

Global Register Allocation

Global Register Allocation

e Scope is either multiple BBs or a whole procedure

* Fundamentally a more complex problem than local register allocation
* Need to consider def-use across multiple blocks

* Cost of spilling may not be uniform since it depends on the execution
frequency of the block where a spill happens

Live Ranges

* A live range for a variable is a region of code

* A global live range is defined as
* For a use u in live range LR, LR. must include every definition d that reaches u
* For each definition d in LR, LR, must include every use u that d reaches

* A variable’s live range
 Starts at the point in the code where the variable receives a value
* Ends where that value is used for the last time

Example

X y W z

z =1 ¢

X = 2 * X t !

1

y =3 %z | 1 |

W =X +Y ¢ I t i

. I I 1

print y + z ! i Y
X:y*W \ \

x’s and w’s live ranges don’t
overlap! They can therefore be
assigned to the same register.

oD on

CS 335 Swarnendu Biswas

|dentifying Global Live Ranges

* Requirement:
* Group all definitions that reach a single use
e Group all uses that a single definition can reach

* Assumption: Register allocation operates on the SSA form
* In SSA, each name is defined once, and each use refers to one definition
* ¢ functions are used at control flow merge points

Example: Discovering Live Ranges

B3 | dy « ¢(dy,dy) B;
. Ay
.. —d,

The Graph Coloring Problem

* For an arbitrary graph G, a
coloring of G assigns a color to
each node in G so that no pair of
adjacent nodes have the same
color

* A coloring that uses k colors is
termed a k-coloring

* The smallest possible k for a
given graph is called the graph’s
chromatic number

AN
N

3

%

CS 335 Swarnendu Biswas

Complexity of Graph Coloring

* For a given graph G, the problem < Determining if a graph G is k-
of finding its chromatic number colorable, for some fixed k, is
is NP-complete NP-complete

Register Assignment with Graph Coloring

* Compilers model register allocation through coloring on an
interference graph
* Each color represents an available register

* An interference graph models conflicts in live regions
* Nodes in an interference graph represent live ranges (LR) for a variable

If variables a and b are active (live) at the same point, they cannot be
assigned to the same register

An edge (i,)) indicates LR; and LR; cannot share a register
Interference graph is undirected

Interferences and the Interference Graph

* If there is an operation during which both LR; and LR; are live, they
cannot reside in the same register

* Two live ranges LR; and LR; interfere is one is live at the definition of the other
and they have different values

Bo[] i i
LR, « - a d

Bl LRb ¢—= o000 Bz[LRC(—]
LRd — ooe LRd(—LRC LRb @

Another Example

a =5

d =9 + a A
e =a+d

b =d+ a

f=e+6 v\
c =Db+f

Connect a and b if ais live at a point where b is defined

Register Assignment with Graph Coloring

* An k-coloring of the interference graph indicates possible register
assignment to k physical registers

* A failed attempt implies compiler needs to generate spill code

* This iterative process will terminate since spilling minimizes the
number of values to be kept in registers

Estimating Cost of Global Spills

* Cost of spilling in global allocation depends on the location
* The cost is uniform for local spills

* Global allocators annotate each reference with an estimated
execution frequency
* Information is derived through static analysis, heuristics, or from profile
information

* Annotations are used to guide decisions about both allocation and
spilling

Top-Down Coloring

* Top-down allocators color live ranges in an order determined by some
ranking function

* Priority-based allocators assign each node a rank that is the estimated
runtime savings that accrue from keeping that live range in a register

* Uses registers for important variables as defined by the ranking
function

Bottom-Up Coloring

* Top-down coloring involves high-level information for ranking

* Bottom-up coloring uses low-level structural knowledge from the
inference graph

References

K. Cooper and L. Torczon. Engineering a Compiler, 2" edition, Chapter 13.
A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition, Chapter 8.8.

Register Allocation, Wikipedia. https://en.wikipedia.org/wiki/Register allocation

Christian Collberg. CSc 553: Register Allocation, Department of Computer Science, University of Arizona.

CS 335 Swarnendu Biswas

https://en.wikipedia.org/wiki/Register_allocation

