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Impact of Register Operands

• Instructions involving register 
operands are faster than those 
involving memory operands

• Code is often smaller and hence 
is faster to fetch

• Efficient utilization of registers is 
important
• Number of general-purpose 

registers is limited
• ~16-32 64-bit general-purpose 

registers
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Goals in Register Allocation

• All variables are not used (or live) at the same time

• Register allocator in a compiler helps with decision making
• Which values will reside in registers?

• Which register will hold each of those values?

• At each program location, values stored in virtual registers in the IR are 
mapped to physical registers
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Goals in Register Allocation

• Programs spend most of their time in loops 
• Natural to store values in innermost loops in registers

• When no registers are available to store a computation, the contents 
of one of the in-use registers must be stored into memory
• This is called register spilling

• Spilling requires generating load and store instructions 

• Concerns associated with spilling
• Code and data overhead associated in spilling, and the overhead in execution time 

• Register pressure measures the availability of free registers
• High register pressure implies that a large fraction of registers are in use
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Goals in Register Allocation

• Goal in register allocation is thus to minimize the impact of spills 
especially for performance-critical code

• Allocation
• Maps an unlimited name space onto the register set of the target machine

• For e.g., map virtual registers to the physical register set and spill values that 
do not fit in the physical register set

• Or, map a subset of memory locations to a set of physical registers

• Assignment
• Map an allocated name set to the physical registers of the target machine

• Assumes that allocation has already been performed
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An Analogy

• Register allocation is a bit like room scheduling

• Room scheduling
• We have a set of rooms (registers)

• We have a set of classes (variables) to fit into the rooms

• Two classes that meet at the same time cannot be allocated to the same 
room

• The difference is that in room scheduling there can be no spilling; no 
one gets to have their lecture in the park!
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Challenges in Register Allocation

• Architectures provide different register classes
• General purpose registers, floating-point registers, predicate and branch 

target registers

• General-purpose registers may be used for floating-point register spills, which 
implies an order for allocation

• Registers may be aliased
• x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bits registers

• Similarly, vector registers like zmm, ymm, and xmm

• If different register classes overlap, the compiler must allocate them together

• PowerPC calling conventions requires parameters to be passed in R3-
R10 and the return is in R3
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Register Allocation Problem

• General formulation of the problem is NP-Complete
• For e.g., register allocation for a set of BBs, multiple control flow paths, 

multiple data types, non-uniform cost of memory access complicate the 
analysis

• Optimal allocation can be done in polynomial time for very restricted versions 
with a single BB, with one data type, 
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Local Register Allocation
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Local Register Allocation

• Assumptions
• Considers only a single basic block

• Loads values from memory and stores to memory

• Single class of 𝑘 general-purpose registers on the target machine
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op1 𝑣𝑟11 , 𝑣𝑟12 ⇒ 𝑣𝑟13
op2 𝑣𝑟21 , 𝑣𝑟22 ⇒ 𝑣𝑟23

…
op𝑛 𝑣𝑟𝑛1 , 𝑣𝑟𝑛2 ⇒ 𝑣𝑟𝑛3

op1 ? , ? ⇒ ?
op2 ? , ? ⇒ ?

…
op𝑛 ? , ? ⇒ ?



Top-Down Allocation with Frequency Counts

• Idea
• Count the frequency of occurrence of virtual registers 

• Map virtual registers to physical registers in descending order of frequency

• If the BB uses fewer than 𝑘 virtual registers, then mapping is trivial

• A few registers (𝐹 ≅ 2−4) are required to execute spill code

• Assign the top (𝑘 − 𝐹) virtual registers to physical registers 

• Rewrite the code and replace virtual registers with physical registers

• For unassigned virtual registers, generate code sequence to spill code 
using the 𝐹 reserved registers
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Drawback of Top-Down Allocation

• Top-down local allocation keeps heavily used virtual registers in 
physical registers 
• Allocates a physical register to one virtual register for the entire BB

• Allocation can be suboptimal if values show phased behavior
• A value heavily-used in the first half of the BB and no use in the second half of 

the BB still stays in the physical register
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Bottom-Up Allocation

• Iterates over the operations in the 
BB and makes decisions

• Assume that registered are grouped 
in classes
• Size: # physical registers

• Name: virtual register name

• Next: distance to next reuse

• Free: flag to indicate whether 
currently in use
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struct Class {
int Size;
int Name[Size];
int Next[Size];
int Free[Size];
int Stack[Size];
int StackTop;

}



Bottom-Up Algorithm

for each operation 𝑖 = {1…𝑛}

𝑟𝑥 = Ensure(𝑣𝑟𝑖1, class(𝑣𝑟𝑖1))

𝑟𝑦 = Ensure(𝑣𝑟𝑖2, class(𝑣𝑟𝑖2))

if 𝑣𝑟𝑖1 is not needed after 𝑖

Free(𝑟𝑥, class(𝑟𝑥))

if 𝑣𝑟𝑖2 is not needed after 𝑖

Free(𝑟𝑦, class(𝑟𝑦))

𝑟𝑧 = Allocate(𝑣𝑟𝑖3, class(𝑣𝑟𝑖3))

rewrite 𝑖 as op𝑖 𝑟𝑥, 𝑟𝑦 ⇒ 𝑟𝑧

if 𝑣𝑟𝑖1 is needed after 𝑖

class.next[𝑟𝑥]= Dist(𝑣𝑟𝑖1)

if 𝑣𝑟𝑖2 is needed after 𝑖

class.next[𝑟𝑦]= Dist(𝑣𝑟𝑖2)

class.next[𝑟𝑧]= Dist(𝑣𝑟𝑖3)
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Bottom-Up Algorithm

Ensure(𝑣𝑟, class)
if 𝑣𝑟 is already in class

result = 𝑣𝑟’s physical register

else 

result = Allocate(𝑣𝑟, class)

emit code to move 𝑣𝑟 into result

return result

Allocate(𝑣𝑟, class)
if class.StackTop >= 0

i = pop(class)

else 

i = j that maximizes class.Next[j]

store contents of j

class.Name[i] = 𝑣𝑟

class.Next[i] = -1

class.Free[i] = false

return i
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Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value

• Register contains a return from a load

• A spill should be stored only if the data is dirty

• Nice!
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But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

store 𝑥2
load 𝑥3
load 𝑥3

spill dirty value



But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2
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store 𝑥2
load 𝑥3
load 𝑥3

load 𝑥3
load 𝑥1

overwrite 
𝑥1

spill dirty value spill clean values



But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥3𝑥1𝑥2
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load 𝑥3
load 𝑥1
load 𝑥3
load 𝑥1

store 𝑥2
load 𝑥3
load 𝑥2

spill clean values spill dirty values



Global Register Allocation
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Global Register Allocation

• Scope is either multiple BBs or a whole procedure

• Fundamentally a more complex problem than local register allocation
• Need to consider def-use across multiple blocks

• Cost of spilling may not be uniform since it depends on the execution 
frequency of the block where a spill happens
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Live Ranges

• A live range for a variable is a region of code

• A global live range is defined as
• For a use 𝑢 in live range LRi, LRi must include every definition 𝑑 that reaches 𝑢

• For each definition 𝑑 in LRi, LRi must include every use 𝑢 that 𝑑 reaches

• A variable’s live range
• Starts at the point in the code where the variable receives a value

• Ends where that value is used for the last time
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Example
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z = 1
x = 2 * x
y = 3 * z
w = x + y
print y + z
x = y * w

x y w z

x’s and w’s live ranges don’t 
overlap! They can therefore be 
assigned to the same register.

R1 R2 R1 R3



Identifying Global Live Ranges

• Requirement: 
• Group all definitions that reach a single use

• Group all uses that a single definition can reach

• Assumption: Register allocation operates on the SSA form
• In SSA, each name is defined once, and each use refers to one definition

• 𝜙 functions are used at control flow merge points
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Example: Discovering Live Ranges
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…
𝑎0 ← ⋯

𝑏0 ← ⋯
… ← 𝑏0
𝑑0 ← ⋯

𝑐0 ← ⋯
…

𝑑1 ← 𝑐0

𝑑2 ← 𝜙(𝑑0, 𝑑1)
… ← 𝑎0
… ← 𝑑2

𝐵0

𝐵1 𝐵2

𝐵3

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3



The Graph Coloring Problem

• For an arbitrary graph 𝐺, a 
coloring of 𝐺 assigns a color to 
each node in 𝐺 so that no pair of 
adjacent nodes have the same 
color 

• A coloring that uses 𝑘 colors is 
termed a 𝑘-coloring 

• The smallest possible 𝑘 for a 
given graph is called the graph’s 
chromatic number

CS 335 Swarnendu Biswas

1

2 4

5

3

1

2 4

5

3



Complexity of Graph Coloring

• For a given graph 𝐺, the problem 
of finding its chromatic number 
is NP-complete

• Determining if a graph 𝐺 is 𝑘-
colorable, for some fixed 𝑘, is 
NP-complete
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Register Assignment with Graph Coloring

• Compilers model register allocation through coloring on an 
interference graph
• Each color represents an available register

• An interference graph models conflicts in live regions
• Nodes in an interference graph represent live ranges (LR) for a variable

• If variables 𝑎 and 𝑏 are active (live) at the same point, they cannot be 
assigned to the same register 

• An edge (𝑖, 𝑗) indicates LRi and LRj cannot share a register

• Interference graph is undirected
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Interferences and the Interference Graph

• If there is an operation during which both LRi and LRj are live, they 
cannot reside in the same register
• Two live ranges LRi and LRj interfere is one is live at the definition of the other 

and they have different values
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…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑏 𝐿𝑅𝑐

𝐿𝑅𝑑



Another Example

a = 5

d = 9 + a

e = a + d

b = d + a

f = e + 6

c = b + f
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A B

XV

Z

Connect a and b if a is live at a point where b is defined



Register Assignment with Graph Coloring

• An 𝑘-coloring of the interference graph indicates possible register 
assignment to 𝑘 physical registers

• A failed attempt implies compiler needs to generate spill code

• This iterative process will terminate since spilling minimizes the 
number of values to be kept in registers

CS 335 Swarnendu Biswas



Estimating Cost of Global Spills

• Cost of spilling in global allocation depends on the location
• The cost is uniform for local spills

• Global allocators annotate each reference with an estimated 
execution frequency
• Information is derived through static analysis, heuristics, or from profile 

information

• Annotations are used to guide decisions about both allocation and 
spilling
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Top-Down Coloring

• Top-down allocators color live ranges in an order determined by some 
ranking function 

• Priority-based allocators assign each node a rank that is the estimated 
runtime savings that accrue from keeping that live range in a register

• Uses registers for important variables as defined by the ranking 
function
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Bottom-Up Coloring

• Top-down coloring involves high-level information for ranking 

• Bottom-up coloring uses low-level structural knowledge from the 
inference graph
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