
CS 335: Register Allocation
Swarnendu Biswas

Semester 2019-2020-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



Impact of Register Operands

• Instructions involving register 
operands are faster than those 
involving memory operands

• Code is often smaller and hence 
is faster to fetch

• Efficient utilization of registers is 
important
• Number of general-purpose 

registers is limited
• ~16-32 64-bit general-purpose 

registers

CS 335 Swarnendu Biswas



Goals in Register Allocation

• All variables are not used (or live) at the same time

• Register allocator in a compiler helps with decision making
• Which values will reside in registers?

• Which register will hold each of those values?

• At each program location, values stored in virtual registers in the IR are 
mapped to physical registers

CS 335 Swarnendu Biswas

Register 
Allocator

Input 
program 

Output 
program 

n registers m registers
n >> m



Goals in Register Allocation

• Programs spend most of their time in loops 
• Natural to store values in innermost loops in registers

• When no registers are available to store a computation, the contents 
of one of the in-use registers must be stored into memory
• This is called register spilling

• Spilling requires generating load and store instructions 

• Concerns associated with spilling
• Code and data overhead associated in spilling, and the overhead in execution time 

• Register pressure measures the availability of free registers
• High register pressure implies that a large fraction of registers are in use

CS 335 Swarnendu Biswas



Goals in Register Allocation

• Goal in register allocation is thus to minimize the impact of spills 
especially for performance-critical code

• Allocation
• Maps an unlimited name space onto the register set of the target machine

• For e.g., map virtual registers to the physical register set and spill values that 
do not fit in the physical register set

• Or, map a subset of memory locations to a set of physical registers

• Assignment
• Map an allocated name set to the physical registers of the target machine

• Assumes that allocation has already been performed

CS 335 Swarnendu Biswas



An Analogy

• Register allocation is a bit like room scheduling

• Room scheduling
• We have a set of rooms (registers)

• We have a set of classes (variables) to fit into the rooms

• Two classes that meet at the same time cannot be allocated to the same 
room

• The difference is that in room scheduling there can be no spilling; no 
one gets to have their lecture in the park!

CS 335 Swarnendu Biswas



Challenges in Register Allocation

• Architectures provide different register classes
• General purpose registers, floating-point registers, predicate and branch 

target registers

• General-purpose registers may be used for floating-point register spills, which 
implies an order for allocation

• Registers may be aliased
• x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bits registers

• Similarly, vector registers like zmm, ymm, and xmm

• If different register classes overlap, the compiler must allocate them together

• PowerPC calling conventions requires parameters to be passed in R3-
R10 and the return is in R3

CS 335 Swarnendu Biswas



Register Allocation Problem

• General formulation of the problem is NP-Complete
• For e.g., register allocation for a set of BBs, multiple control flow paths, 

multiple data types, non-uniform cost of memory access complicate the 
analysis

• Optimal allocation can be done in polynomial time for very restricted versions 
with a single BB, with one data type, 

CS 335 Swarnendu Biswas



Local Register Allocation

CS 335 Swarnendu Biswas



Local Register Allocation

• Assumptions
• Considers only a single basic block

• Loads values from memory and stores to memory

• Single class of 𝑘 general-purpose registers on the target machine

CS 335 Swarnendu Biswas

op1 𝑣𝑟11 , 𝑣𝑟12 ⇒ 𝑣𝑟13
op2 𝑣𝑟21 , 𝑣𝑟22 ⇒ 𝑣𝑟23

…
op𝑛 𝑣𝑟𝑛1 , 𝑣𝑟𝑛2 ⇒ 𝑣𝑟𝑛3

op1 ? , ? ⇒ ?
op2 ? , ? ⇒ ?

…
op𝑛 ? , ? ⇒ ?



Top-Down Allocation with Frequency Counts

• Idea
• Count the frequency of occurrence of virtual registers 

• Map virtual registers to physical registers in descending order of frequency

• If the BB uses fewer than 𝑘 virtual registers, then mapping is trivial

• A few registers (𝐹 ≅ 2−4) are required to execute spill code

• Assign the top (𝑘 − 𝐹) virtual registers to physical registers 

• Rewrite the code and replace virtual registers with physical registers

• For unassigned virtual registers, generate code sequence to spill code 
using the 𝐹 reserved registers

CS 335 Swarnendu Biswas



Drawback of Top-Down Allocation

• Top-down local allocation keeps heavily used virtual registers in 
physical registers 
• Allocates a physical register to one virtual register for the entire BB

• Allocation can be suboptimal if values show phased behavior
• A value heavily-used in the first half of the BB and no use in the second half of 

the BB still stays in the physical register

CS 335 Swarnendu Biswas



Bottom-Up Allocation

• Iterates over the operations in the 
BB and makes decisions

• Assume that registered are grouped 
in classes
• Size: # physical registers

• Name: virtual register name

• Next: distance to next reuse

• Free: flag to indicate whether 
currently in use

CS 335 Swarnendu Biswas

struct Class {
int Size;
int Name[Size];
int Next[Size];
int Free[Size];
int Stack[Size];
int StackTop;

}



Bottom-Up Algorithm

for each operation 𝑖 = {1…𝑛}

𝑟𝑥 = Ensure(𝑣𝑟𝑖1, class(𝑣𝑟𝑖1))

𝑟𝑦 = Ensure(𝑣𝑟𝑖2, class(𝑣𝑟𝑖2))

if 𝑣𝑟𝑖1 is not needed after 𝑖

Free(𝑟𝑥, class(𝑟𝑥))

if 𝑣𝑟𝑖2 is not needed after 𝑖

Free(𝑟𝑦, class(𝑟𝑦))

𝑟𝑧 = Allocate(𝑣𝑟𝑖3, class(𝑣𝑟𝑖3))

rewrite 𝑖 as op𝑖 𝑟𝑥, 𝑟𝑦 ⇒ 𝑟𝑧

if 𝑣𝑟𝑖1 is needed after 𝑖

class.next[𝑟𝑥]= Dist(𝑣𝑟𝑖1)

if 𝑣𝑟𝑖2 is needed after 𝑖

class.next[𝑟𝑦]= Dist(𝑣𝑟𝑖2)

class.next[𝑟𝑧]= Dist(𝑣𝑟𝑖3)

CS 335 Swarnendu Biswas



Bottom-Up Algorithm

Ensure(𝑣𝑟, class)
if 𝑣𝑟 is already in class

result = 𝑣𝑟’s physical register

else 

result = Allocate(𝑣𝑟, class)

emit code to move 𝑣𝑟 into result

return result

Allocate(𝑣𝑟, class)
if class.StackTop >= 0

i = pop(class)

else 

i = j that maximizes class.Next[j]

store contents of j

class.Name[i] = 𝑣𝑟

class.Next[i] = -1

class.Free[i] = false

return i

CS 335 Swarnendu Biswas



Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value

• Register contains a return from a load

• A spill should be stored only if the data is dirty

• Nice!

CS 335 Swarnendu Biswas



But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

store 𝑥2
load 𝑥3
load 𝑥3

spill dirty value



But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

store 𝑥2
load 𝑥3
load 𝑥3

load 𝑥3
load 𝑥1

overwrite 
𝑥1

spill dirty value spill clean values



But is it so straightforward?

• Assume a two-register machine

• 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

load 𝑥3
load 𝑥1
load 𝑥3
load 𝑥1

store 𝑥2
load 𝑥3
load 𝑥2

spill clean values spill dirty values



Global Register Allocation

CS 335 Swarnendu Biswas



Global Register Allocation

• Scope is either multiple BBs or a whole procedure

• Fundamentally a more complex problem than local register allocation
• Need to consider def-use across multiple blocks

• Cost of spilling may not be uniform since it depends on the execution 
frequency of the block where a spill happens

CS 335 Swarnendu Biswas



Live Ranges

• A live range for a variable is a region of code

• A global live range is defined as
• For a use 𝑢 in live range LRi, LRi must include every definition 𝑑 that reaches 𝑢

• For each definition 𝑑 in LRi, LRi must include every use 𝑢 that 𝑑 reaches

• A variable’s live range
• Starts at the point in the code where the variable receives a value

• Ends where that value is used for the last time

CS 335 Swarnendu Biswas



Example

CS 335 Swarnendu Biswas

z = 1
x = 2 * x
y = 3 * z
w = x + y
print y + z
x = y * w

x y w z

x’s and w’s live ranges don’t 
overlap! They can therefore be 
assigned to the same register.

R1 R2 R1 R3



Identifying Global Live Ranges

• Requirement: 
• Group all definitions that reach a single use

• Group all uses that a single definition can reach

• Assumption: Register allocation operates on the SSA form
• In SSA, each name is defined once, and each use refers to one definition

• 𝜙 functions are used at control flow merge points

CS 335 Swarnendu Biswas



Example: Discovering Live Ranges

CS 335 Swarnendu Biswas

…
𝑎0 ← ⋯

𝑏0 ← ⋯
… ← 𝑏0
𝑑0 ← ⋯

𝑐0 ← ⋯
…

𝑑1 ← 𝑐0

𝑑2 ← 𝜙(𝑑0, 𝑑1)
… ← 𝑎0
… ← 𝑑2

𝐵0

𝐵1 𝐵2

𝐵3

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3



The Graph Coloring Problem

• For an arbitrary graph 𝐺, a 
coloring of 𝐺 assigns a color to 
each node in 𝐺 so that no pair of 
adjacent nodes have the same 
color 

• A coloring that uses 𝑘 colors is 
termed a 𝑘-coloring 

• The smallest possible 𝑘 for a 
given graph is called the graph’s 
chromatic number

CS 335 Swarnendu Biswas

1

2 4

5

3

1

2 4

5

3



Complexity of Graph Coloring

• For a given graph 𝐺, the problem 
of finding its chromatic number 
is NP-complete

• Determining if a graph 𝐺 is 𝑘-
colorable, for some fixed 𝑘, is 
NP-complete

CS 335 Swarnendu Biswas



Register Assignment with Graph Coloring

• Compilers model register allocation through coloring on an 
interference graph
• Each color represents an available register

• An interference graph models conflicts in live regions
• Nodes in an interference graph represent live ranges (LR) for a variable

• If variables 𝑎 and 𝑏 are active (live) at the same point, they cannot be 
assigned to the same register 

• An edge (𝑖, 𝑗) indicates LRi and LRj cannot share a register

• Interference graph is undirected

CS 335 Swarnendu Biswas



Interferences and the Interference Graph

• If there is an operation during which both LRi and LRj are live, they 
cannot reside in the same register
• Two live ranges LRi and LRj interfere is one is live at the definition of the other 

and they have different values

CS 335 Swarnendu Biswas

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑏 𝐿𝑅𝑐

𝐿𝑅𝑑



Another Example

a = 5

d = 9 + a

e = a + d

b = d + a

f = e + 6

c = b + f

CS 335 Swarnendu Biswas

A B

XV

Z

Connect a and b if a is live at a point where b is defined



Register Assignment with Graph Coloring

• An 𝑘-coloring of the interference graph indicates possible register 
assignment to 𝑘 physical registers

• A failed attempt implies compiler needs to generate spill code

• This iterative process will terminate since spilling minimizes the 
number of values to be kept in registers

CS 335 Swarnendu Biswas



Estimating Cost of Global Spills

• Cost of spilling in global allocation depends on the location
• The cost is uniform for local spills

• Global allocators annotate each reference with an estimated 
execution frequency
• Information is derived through static analysis, heuristics, or from profile 

information

• Annotations are used to guide decisions about both allocation and 
spilling

CS 335 Swarnendu Biswas



Top-Down Coloring

• Top-down allocators color live ranges in an order determined by some 
ranking function 

• Priority-based allocators assign each node a rank that is the estimated 
runtime savings that accrue from keeping that live range in a register

• Uses registers for important variables as defined by the ranking 
function

CS 335 Swarnendu Biswas



Bottom-Up Coloring

• Top-down coloring involves high-level information for ranking 

• Bottom-up coloring uses low-level structural knowledge from the 
inference graph

CS 335 Swarnendu Biswas



References

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 13.

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 8.8.

• Register Allocation, Wikipedia. https://en.wikipedia.org/wiki/Register_allocation

• Christian Collberg. CSc 553: Register Allocation, Department of Computer Science, University of Arizona.

CS 335 Swarnendu Biswas

https://en.wikipedia.org/wiki/Register_allocation

